4. The law of the excluded middle
17/10/22
Logic of evidence & proof | Intuitionistic logic |
---|---|
Logic of truth | Classical Logic |
Excluded Middle
Every propositions is either true or false
Intuitionistic logic is constructive (compatible) Classical logic may not be compatible Intuitionistic logic is weaker than classical
em (P)
- Proves it classically. Allows you to 'spawn' in a variable
Code
variables P Q R : Prop
open classical
#check em P
theorem dMorgan2 : ¬(P ∧ Q) ↔ ¬ P ∨ ¬ Q :=
begin
constructor,
assume npq,
have pnp : P ∨ ¬ P,
apply em,
cases pnp with p np,
right,
assume q,
apply npq,
constructor,
exact p,
exact q,
left,
exact np,
assume h,
cases h,
assume pq,
cases pq with p q,
apply h,
exact p,
assume pq,
cases pq with p q,
apply h,
exact q,
end
-- indirect proof
-- to prove P assume ¬ P and desrive False
-- reductio ad absurdum
theorem raa : ¬ ¬ P → P :=
begin
assume nnp,
have pnp : P ∨ ¬P,
apply em,
cases pnp with p np,
exact p,
have f : false,
apply nnp,
exact np,
cases f,
end
example : P → ¬ ¬ P :=
begin
assume p np,
apply np,
exact p,
end
theorem nnem : ¬ ¬ (P ∨ ¬ P) :=
begin
assume np,
apply np,
right,
assume p,
apply np,
left,
exact p,
end
theorem em_from_raa : P ∨ ¬ P :=
begin
apply raa,
apply nnem,
end
Wills Way
have pnp: P ∨ ¬P,
apply em,
cases pnp with p np,
exact p,
is same as
cases (em P) with p np,
exact p